A Data-Driven Assessment of Biosphere-Atmosphere Interaction Impact on Seasonal Cycle Patterns of XCO2 Using GOSAT and MODIS Observations

نویسندگان

  • Zhonghua He
  • Zhaocheng Zeng
  • Liping Lei
  • Nian Bie
  • Shaoyuan Yang
چکیده

Using measurements of the column-averaged CO2 dry air mole fraction (XCO2) from GOSAT and biosphere parameters, including normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), leaf area index (LAI), gross primary production (GPP), and land surface temperature (LST) from MODIS, this study proposes a data-driven approach to assess the impacts of terrestrial biosphere activities on the seasonal cycle pattern of XCO2. A unique global land mapping dataset of XCO2 with a resolution of 1◦ by 1◦ in space, and three days in time, from June 2009 to May 2014, which facilitates the assessment at a fine scale, is first produced from GOSAT XCO2 retrievals. We then conduct a statistical fitting method to obtain the global map of seasonal cycle amplitudes (SCA) of XCO2 and NDVI, and implement correlation analyses of seasonal variation between XCO2 and the vegetation parameters. As a result, the spatial distribution of XCO2 SCA decreases globally with latitude from north to south, which is in good agreement with that of simulated XCO2 from CarbonTracker. The spatial pattern of XCO2 SCA corresponds well to the vegetation seasonal activity revealed by NDVI, with a strong correlation coefficient of 0.74 in the northern hemisphere (NH). Some hotspots in the subtropical areas, including Northern India (with SCA of 8.68 ± 0.49 ppm on average) and Central Africa (with SCA of 8.33 ± 0.25 ppm on average), shown by satellite measurements, but missed by model simulations, demonstrate the advantage of satellites in observing the biosphere–atmosphere interactions at local scales. Results from correlation analyses between XCO2 and NDVI, EVI, LAI, or GPP show a consistent spatial distribution, and NDVI and EVI have stronger negative correlations over all latitudes. This may suggest that NDVI and EVI can be better vegetation parameters in characterizing the seasonal variations of XCO2 and its driving terrestrial biosphere activities. We, furthermore, present the global distribution of phase lags of XCO2 compared to NDVI in seasonal variation, which, to our knowledge, is the first such map derived from a completely data-driven approach using satellite observations. The impact of retrieval error of GOSAT data on the mapping data, especially over high-latitude areas, is further discussed. Results from this study provide reference for better understanding the distribution of the strength of carbon sink by terrestrial ecosystems and utilizing remote sensing data in assessing the impact of biosphere–atmosphere interactions on the seasonal cycle pattern of atmospheric CO2 columns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption

Satellite observations can be used to detect the changes of CO2 concentration at global and regional scales. With the column-averaged CO2 dry-air mole fraction (Xco2) data derived from satellite observations, the issue is how to extract and assess these changes, which are related to anthropogenic emissions and biosphere absorptions. We propose a k-means cluster analysis to extract the temporall...

متن کامل

Comparison of Satellite-Observed XCO2 from GOSAT, OCO-2, and Ground-Based TCCON

CO2 is one of the most important greenhouse gases. Its concentration and distribution in the atmosphere have always been important in studying the carbon cycle and the greenhouse effect. This study is the first to validate the XCO2 of satellite observations with total carbon column observing network (TCCON) data and to compare the global XCO2 distribution for the passive satellites Orbiting Car...

متن کامل

Towards constraints on fossil fuel emissions from total column carbon dioxide

We assess the large-scale, top-down constraints on regional fossil fuel emissions provided by observations of atmospheric total column CO2, XCO2 . Using an atmospheric general circulation model (GCM) with underlying fossil emissions, we determine the influence of regional fossil fuel emissions on global XCO2 fields. We quantify the regional contrasts between source and upwind regions and probe ...

متن کامل

Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: sensitivity to measurement bias inside and outside Europe

Estimates of the natural CO2 flux over Europe inferred from in situ measurements of atmospheric CO2 mole fraction have been used previously to check top-down flux estimates inferred from space-borne dry-air CO2 column (XCO2) retrievals. Several recent studies have shown that CO2 fluxes inferred from XCO2 data from the Japanese Greenhouse gases Observing SATellite (GOSAT) and the Scanning Imagin...

متن کامل

Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate-related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsiste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017